
"""
Author: Christopher Treadgold
Date: 29/07/2016
"""

PYTHON STYLE GUIDELINES FOR AMAZON WEB SERVICES CMS

FOREWORD: The purpose of this document is to facilitate consistent python code
 throughout the AWS CMS project.

 In the event that a topic is not covered by this document, refer
 instead to the PEP 8 style guide.

GENERAL CONVENTIONS
===================

CLASS NAMES : Class / ClassName (CapWords convention)
FILE NAMES : file.py / file_name.py (No capital letters)
MAX LINE LENGTH : 79 characters (Most editors can show this visually)
FUNCTION NAMES : function / function_name (No capital letters)
QUOTE TYPE : " (Double quotes)
TAB LENGTH : 4
TAB TYPE : Spaces (Most if not all editors have this as an option)
VARIABLE NAMES : variable / variable_name (No capital letters)

FILE HEADER
===========

A file header should be included at the start of each file, directly below the
python interpreter location.

Template (do not indent):

 """
 # file_name.py
 # Author: <Name>
 # Date: <Date>
 # Edited: DD/MM/YYYY | <Name>
 # N/D | <Name> (N/D is only for old files where date is
 """ missing)

VARIABLES
=========

Variables should be named with no capital letters with underscores used
to split up words as in:

 variable_name

Attempt to keep variable names concise while not resorting to unuseful names
such as: a, temp, or variable1.

FUNCTIONS
=========

Functions should follow the same naming conventions as variables. They should
contain a short docstring immediately below the function definition as in:

 def add_two(num):
 """ Takes a number and adds two to it """

 return num + 2

WHITE SPACE
===========

White space should only be added where needed and on occassion to improve
readability. There should be no whitespace at the end of lines for instance.

A case that is not particularly obvious is keyword argument use. Where unlike
variable assignment, there should be no whitespace between the variable name,
assignment operator, and value.

Though it can occasionally improve readibility, variable declarations should
not be lined up with one another unless they are related to one another and are
only 1-2 characters offset.

Inline comments should be seperated from the # symbol by a single space, and
just like any other code should not include trailing whitespace.

Avoid situations such as:

 variable = dict["key"] ["key_two"]
 class.function(argument)
 def function(argument, argument_two)
 function(argument) <----Trailing whitespace
 function(keyword_arg = value)

 variable = value
 long_name_variable = long_value
 mid_variable = mid_value

Written correctly:

 variable = dict["key"]["key_two"]
 class.function(argument)
 def function(argument, argument_two)
 function(argument)<----No trailing whitespace
 function(keyword_arg=value)

 variable = value
 long_name_variable = long_value
 mid_variable = mid_value

Acceptable variable alignment situation:

 variable_a = value_a
 variable_ab = value_ab
 variable_abc = value_abc

BLANK LINES
===========

Blank lines should be used to seperate function definitions from one another.
Use 2 blank lines between each definition, with 1 blank line between the class
definition and the first function definition. This is usually __init__.

Blank lines can also be used to seperate logical sections of code, but should
be used sparingly. There is no hard and fast rule in terms of what is meant
by "sparingly", so add blank lines with discretion.

MULTIPLE LINE STATEMENTS
========================

In order to conform to the 79 character per line limit, statements will
frequently have to be split over multiple lines. This is one of the trickiest
aspects to writing readable code, so I will to my best to provide tools
that make the job easier. All examples in this section use parentheses but
apply also when braces and brackets are used.

Firstly, I will describe practices for multi-line function definitions and
calls. I'm sure you will have on occasion found yourself writing a line of code
like this:

 def function(argument1, argument2, argument3, argument4, argument5, argument6,
argument7, argument8)

Terrible. Unfortunately, this starts to happen extremely easily indentation
level increases. Fortunaly, fixing the problem is quite simple:

 def function(argument1, argument3, argument3, argument4, argument5,
 argument6, argument7, argument8)

Much more readable. Now, this solution works great in the case that there is
plenty of space after the opening parenthesis, but what if there isn't? Here's
an example:

 indent_level_one:
 indent_level_two:
 indent_level_three:
 class.disgustingly_long_function_name_why_oh_why(argument1,
 argument2,
 argument3,
 argument3,
 argument4,
 argument5,
 argument6,
 argument7,
 argument8)

Sends shivers down your spine right? However again there is a simple solution:

 indent_level_one:
 indent_level_two:

 indent_level_three:
 class.disgustingly_long_function_name_why_oh_why(
 argument1, argument2, argument3, argument4, argument5,
 argument6, argument7, argument8
)

Much better. Make sure to note the position of the closing parenthesis. In
cases where an argument list goes more than a single line below the beginning
of the function definition, the closing parenthesis goes on its on line with
its indentation the same as the beginning on the function definition.

For example this is what it would look like if the argument list wasn't so
long:

 indent_level_one:
 indent_level_two:
 indent_level_three:
 class.disgustingly_long_function_name_why_oh_why(
 argument1, argument2, argument3, argument4, argument5)

As an important note: Unless vertical alignment is being used (as in the first
example of this section), no arguments should appear on the first line.

Now onto multi-line strings. Splitting a string over multiple lines is
fortunately extremely simple in python:

 print(
 "I am a"
 " happy donut"
 " covered in"
 " delicious treats"
 " please don't eat"
 " me oh god I have a family."
)

Which would print:

 "I am a happy donut covered in delicious treats please don't eat me oh god
 I have a family." (Minus the newline)

The same effect can be achieved using the escape character "\", however this is
discouraged in PEP 8. This is what it looks like in case it's necessary:

 print: "I am a" \
 " happy donut" \
 " covered in" \
 " delicious treats" \
 " please don't eat" \
 " me oh god I have a family."

Using parentheses also works to split expressions into multiple lines:

 print(2
 + 3
 - 5
 % 10
 / 6)

This is identical to:

 print(2 + 3 - 5 % 10 / 6)

When using this approach, the breaks should always occur before operands
rather than after them.

